4.7 Article

COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

Journal

ASTROPHYSICAL JOURNAL
Volume 737, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/737/2/72

Keywords

magnetohydrodynamics (MHD); solar wind; Sun: corona; Sun: dynamo; Sun: magnetic topology

Funding

  1. ERC [207430]
  2. CNRS PNST Interfaces group
  3. European Research Council (ERC) [207430] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available