4.7 Article Proceedings Paper

Release into the environment of metals by two vascular salt marsh plants

Journal

MARINE ENVIRONMENTAL RESEARCH
Volume 54, Issue 3-5, Pages 325-329

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0141-1136(02)00131-9

Keywords

Spartina alterniflora; Phragmites australis; salt marsh; metals; evapo-transpiration

Ask authors/readers for more resources

Metals in contaminated salt marshes are mainly locked in the anaerobic layer of sediments, where they are tightly bound as sulfides and organic complexes. Vascular plants survive in saturated soils in part by pumping O-2 into their root zones, changing their microenvironment to an oxic one. This, along with chelating exudates, mobilizes metals, allowing uptake by the roots. We compared the common reed Phragmites australis and cordgrass Spartina alterniflora in lab and field studies for ways in which they handle trace metals. Both plants store most of their metal burden in their roots, but some is transported to aboveground tissues. Spartina leaves contain similar to2-3x more Cr, Pb, and Hg than Phragmites leaves, but equivalent Cu and Zn. Furthermore, Spartina leaves have salt glands, so leaf excretion of all metals is twice that of Phragmites. In-depth studies with Hg indicate that Hg excretion correlates with Na release but not with transpiration, which is 2.2x higher in Phragmites; and that more Hg accumulates in early-appearing leaves than in upper (i.e. later) leaves in both species. Spartina thus makes more metals available to salt marsh ecosystems than Phragmites by direct excretion and via dead leaves which will enter the food web as detritus. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available