4.1 Article

Potential of sanguiin H-6 against oxidative damage in renal mitochondria and apoptosis mediated by peroxynitrite in vivo

Journal

NEPHRON
Volume 92, Issue 1, Pages 133-141

Publisher

KARGER
DOI: 10.1159/000064483

Keywords

sanguiin H-6; Sanguisorbae Radix; peroxynitrite; mitochondria; apoptosis; renal function; rat

Ask authors/readers for more resources

Potential of sanguiin H-6, a component of Sanguisorbae Radix, to protect against oxidative damage in renal mitochondria and apoptosis mediated by peroxynitrite (ONOO-) was examined using a model in which rats were injected with lipopolysaccharide (LPS) and then subjected to renal ischemia followed reperfusion (LPS plus ischemia-reperfusion). Ischemia-reperfusion was achieved by occluding bilateral renal artery for 60 min and then releasing for 350 min. At 50 min after ischemia started, LPS was injected intravenously. LPS plus ischemia-reperfusion induced a large amount of 3-nitrotyrosine, an oxidative product of protein that is produced via ONOO- nitration, which was not detectable in normal group. Oxidative damage of mitochondria was indicated by an accumulated thiobarbituric acid (TBA)-reactive substance, glutathione (GSH) depletion and glutathione peroxidase (GSH-Px) inactivation in the mitochondria. Treatment of rats with sanguiin H-6 (10 mg/kg body weight/day) for 30 days prior to LPS plus ischemia-reperfusion attenuated the oxidative damage in the mitochondria. The amount of TBA-reactive substance was decreased and the GSH levels significantly increased as compared with that in control group. However, its effect on GSH-Px activity was much weaker. Apoptosis induced by LPS plus ischemia-reperfusion was detected by fluorescence staining, TdT-mediated dUTP-biotin nick end labeling and electrophoretic analysis. Sanguiin H-6 appeared to inhibit apoptosis, and this was associated with the suppression of caspase-3 activity. These beneficial effects of sanguiin H-6 against oxidative damage in mitochondria and apoptosis contributed to the improvement in renal function by reversing the elevated levels of blood urea nitrogen and creatinine caused by ONOO-. Copyright (C) 2002 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available