4.7 Article

A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE

Journal

ASTROPHYSICAL JOURNAL
Volume 743, Issue 1, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/0004-637X/743/1/28

Keywords

cosmic background radiation; cosmological parameters; cosmology: observations

Funding

  1. National Science Foundation [ANT-0638937, ANT-0130612, AST-1009811, 0709498]
  2. NSF Physics Frontier Center [PHY-0114422]
  3. National Sciences and Engineering Research Council of Canada
  4. Canada Research Chairs program
  5. Canadian Institute for Advanced Research
  6. NASA [51275.01]
  7. KICP
  8. Alfred P. Sloan
  9. Yale University
  10. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  11. Division Of Astronomical Sciences
  12. Direct For Mathematical & Physical Scien [0709498] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg(2) of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < l < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, Lambda CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is n(s) = 0.9663 +/- 0.0112. We detect, at similar to 5 sigma significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the Lambda CDM cosmological model. We explore a number of extensions beyond the Lambda CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r < 0.21 (95% CL) and constrain the running of the scalar spectral index to be dn(s)/d ln k = -0.024 +/- 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 sigma, while a model without neutrinos is rejected at 7.5 sigma. The primordial helium abundance is measured to be Y-p = 0.296 +/- 0.030, and the effective number of relativistic species is measured to be N-eff = 3.85 +/- 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include n(s) = 0.9668 +/- 0.0093, r < 0.17 (95% CL), and N-eff = 3.86 +/- 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available