4.7 Article

THE GLOBULAR CLUSTER SYSTEM OF THE MILKY WAY: ACCRETION IN A COSMOLOGICAL CONTEXT

Journal

ASTROPHYSICAL JOURNAL
Volume 744, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/744/1/57

Keywords

Galaxy: evolution; globular clusters: general

Funding

  1. Australian Research Council [DP0878137, DP1093431]
  2. Australian Research Council [DP0878137, DP1093431] Funding Source: Australian Research Council

Ask authors/readers for more resources

We examine the significance of a planar arrangement in the spatial distribution of the Milky Way (MW) globular clusters (GCs). We find that, when separated on the basis of horizontal branch morphology and metallicity, the outermost canonical young halo (YH) GC sample (at galactocentric radii in excess of 10 kpc) exhibits an anisotropic distribution that may be equated to a plane (24 +/- 4) kpc thick (rms) and inclined at 8 degrees +/- 5 degrees to the polar axis of the MW disk. To quantify the significance of this plane we determine the fraction of times that an isotropic distribution replicates the observed distribution in Monte Carlo trials. The plane is found to remain significant at the >95% level outside a galactocentric radius of 10 kpc, inside this radius the spatial distribution is apparently isotropic. In contrast, the spatial distribution of the old halo sample outside 10 kpc is well matched by an isotropic distribution. The plane described by the outer YH GCs is indistinguishable in orientation from that presented by the satellite galaxies of the MW. Simulations have shown that the planar arrangement of satellites can arise as filaments of the surrounding large-scale structure feed into the MW's potential. We therefore propose that our results are direct observational evidence for the accreted origin of the outer YH GC population. This conclusion confirms numerous lines of evidence that have similarly indicated an accreted origin for this set of clusters from the inferred cluster properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available