4.7 Article

THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7

Journal

ASTROPHYSICAL JOURNAL
Volume 733, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/733/2/99

Keywords

cosmology: observations; dust, extinction; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: stellar content

Funding

  1. Yale Center for Astronomy and Astrophysics
  2. National Science Foundation [AST-00708490, AST-0071048]
  3. Yale University
  4. NOAO
  5. W. M. Keck Foundation
  6. Division Of Astronomical Sciences
  7. Direct For Mathematical & Physical Scien [806861] Funding Source: National Science Foundation

Ask authors/readers for more resources

We investigate the average physical properties and star formation histories (SFHs) of the most UV-luminous star-forming galaxies at z similar to 3.7. Our results are based on the average spectral energy distributions (SEDs), constructed from stacked optical-to-infrared photometry, of a sample of the 1913 most UV-luminous star-forming galaxies found in 5.3 deg(2) of the NOAO Deep Wide-Field Survey. We find that the shape of the average SED in the rest optical and infrared is fairly constant with UV luminosity, i.e., more UV-luminous galaxies are, on average, also more luminous at longer wavelengths. In the rest UV, however, the spectral slope beta (equivalent to dlogF(lambda)/dlog lambda; measured at 0.13 mu m < lambda(rest) < 0.28 mu m) rises steeply with the median UV luminosity from -1.8 at L approximate to L* to -1.2 (L approximate to 4-5L*). We use population synthesis analyses to derive their average physical properties and find that (1) L-UV and thus star formation rates (SFRs) scale closely with stellar mass such that more UV-luminous galaxies are also more massive, (2) the median ages indicate that the stellar populations are relatively young (200-400 Myr) and show little correlation with UV luminosity, and (3) more UV-luminous galaxies are dustier than their less-luminous counterparts, such that L approximate to 4-5L* galaxies are extincted up to A(1600) = 2 mag while L approximate to L* galaxies have A(1600) = 0.7-1.5 mag. We argue that the average SFHs of UV-luminous galaxies are better described by models in which SFR increases with time in order to simultaneously reproduce the tight correlation between the UV-derived SFR and stellar mass and their universally young ages. We demonstrate the potential of measurements of the SFR-M-* relation at multiple redshifts to discriminate between simple models of SFHs. Finally, we discuss the fate of these UV-brightest galaxies in the next 1-2 Gyr and their possible connection to the most massive galaxies at z similar to 2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available