4.7 Article

Partial optimization of molecular geometry in normal coordinates and use as a tool for simulation of vibrational spectra

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 117, Issue 9, Pages 4126-4132

Publisher

AIP Publishing
DOI: 10.1063/1.1498468

Keywords

-

Ask authors/readers for more resources

A normal mode coordinate-based molecular optimization algorithm was implemented and its performance tested against other optimization techniques. In certain cases the method was found to be computationally simpler and numerically more stable than the optimization algorithms based on Cartesian or internal valence coordinates. The usual redundant/internal coordinate scheme provided fastest convergence for compact covalently bonded molecules, while the normal mode method was found to be more suitable for more weakly bonded molecular complexes. For constrained optimizations use of the normal coordinates allows one to naturally separate the lower-energy modes from those more typically studied with vibrational spectroscopy. Thus, it provides an appropriate tool for simulations of IR and Raman spectra of larger molecules and complex systems when specific conformations are desired. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available