4.8 Article

Resonant enhancement of tunneling magnetoresistance in double-barrier magnetic heterostructures

Journal

PHYSICAL REVIEW LETTERS
Volume 89, Issue 10, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.89.107205

Keywords

-

Ask authors/readers for more resources

We show that spin-dependent resonant tunneling can dramatically enhance tunneling magnetoresistance. We consider double-barrier structures comprising a semiconductor quantum well between two insulating barriers and two ferromagnetic electrodes. By tuning the width of the quantum well, the lowest resonant level can be moved into the energy interval where the density of states for minority spins is zero. This leads to a great enhancement of the magnetoresistance, which exhibits a strong maximum as a function of the quantum well width. We demonstrate that magnetoresistance exceeding 800% is achievable in GaMnAs/AlAs/GaAs/AlAs/GaMnAs double-barrier structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available