4.7 Article

C18O DEPLETION IN STARLESS CORES IN TAURUS

Journal

ASTROPHYSICAL JOURNAL
Volume 728, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/728/2/144

Keywords

ISM: abundances; ISM: clouds; ISM: individual objects (TMC2, L1498, L1512, L1489, L1517B, L1521E, L1495AS, L1544); ISM: molecules; stars: formation

Funding

  1. Office of Space Science, National Aeronautics and Space Administration through the NASA Astrobiology Institute [CAN-02-OSS-02]

Ask authors/readers for more resources

We present here findings for (CO)-O-18 depletion in eight starless cores in Taurus: TMC-2, L1498, L1512, L1489, L1517B, L1521E, L1495A-S, and L1544. We compare observations of the (CO)-O-18 J = 2-1 transition taken with the ALMA prototype receiver on the Heinrich Hertz Submillimeter Telescope to results of radiative transfer modeling using RATRAN. We use temperature and density profiles calculated from dust continuum radiative transfer models to model the (CO)-O-18 emission. We present modeling of three cores, TMC-2, L1489, and L1495A-S, which have not been modeled before, and compare our results for the five cores with published models. We find that all of the cores but one, L1521E, are substantially depleted. We also find that varying the temperature profiles of these model cores has a discernable effect, and varying the central density has an even larger effect. We find no trends with depletion radius or depletion fraction with the density or temperature of these cores, suggesting that the physical structure alone is insufficient to fully constrain evolutionary state. We are able to place tighter constraints on the radius at which (CO)-O-18 is depleted than the absolute fraction of depletion. As the timeline of chemical depletion depends sensitively on the fraction of depletion, this difficulty in constraining depletion fraction makes comparison with other timescales, such as the free-fall timescale, very difficult.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available