4.7 Article

Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility

Journal

CIRCULATION RESEARCH
Volume 91, Issue 5, Pages 434-440

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000033522.37861.69

Keywords

apelin; contractility; signal transduction; gene expression

Ask authors/readers for more resources

The orphan receptor AM and its recently identified endogenous ligand, apelin, exhibit high levels of mRNA expression in the heart. However, the functional importance of apelin in the cardiovascular system is not known. In isolated perfused rat hearts, infusion of apelin (0.01 to 10 nmol/L) induced a dose-dependent positive inotropic effect (EC50: 33.1+/-1.5 pmol/L). Moreover, preload-induced increase in dP/dt(max) was significantly augmented (P<0.05) in the presence of apelin. Inhibition of phospholipase C (PLC) with U-73122 and suppression of protein kinase C (PKC) with staurosporine and GF-109203X markedly attenuated the apelin-induced inotropic effect (P<0.001). In addition, zoniporide, a selective inhibitor of Na+-H+ exchange (NHE) isoform-1, and KB-R7943, a potent inhibitor of the reverse mode Na+-Ca2+ exchange (NCX), significantly suppressed the response to apelin (P<0.001). Perforated patch-clamp recordings showed that apelin did not modulate L-type Ca2+ current or voltage-activated K+ currents in isolated adult rat ventricular myocytes. Apelin mRNA was markedly downregulated in cultured neonatal rat ventricular myocytes subjected to mechanical stretch and in vivo in two models of chronic ventricular pressure overload. The present study provides the first evidence for the physiological significance of apelin in the heart. Our results show that apelin is one of the most potent endogenous positive inotropic substances yet identified and that the inotropic response to apelin may involve activation of PLC, PKC, and sarcolemmal NHE and NCX.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available