4.6 Article

Mitochondrial substrate level phosphorylation is essential for growth of procyclic Trypanosoma brucei

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 36, Pages 32849-32854

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205776200

Keywords

-

Ask authors/readers for more resources

Oxidative phosphorylation and substrate level phosphorylation catalyzed by succinyl-CoA synthetase found in the citric acid and the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle contribute to mitochondrial ATP synthesis in procyclic Trypanosoma brucei. The latter pathway is specific for trypanosome but also found in hydrogenosomes. In organello ATP production was studied in wild-type and in RNA interference cell lines ablated for key enzymes of each of the three pathways. The following results were obtained: 1) ATP production in the acetate:succinate CoA transferase/succinyl-CoA synthetase cycle was directly demonstrated. 2) Succinate dehydrogenase appears to be the only entry point for electrons of mitochondrial substrates into the respiratory chain; however, its activity could be ablated without causing a growth phenotype. 3) Growth of procyclic T. brucei was not affected by the absence of either a functional citric acid or the acetate: succinate CoA transferase/succinyl-CoA synthetase cycle. However, interruption of both pathways in the same cell line resulted in a growth arrest. In summary, these results show that oxygen-independent substrate level phosphorylation either linked to the citric acid cycle or tied into acetate production is essential for growth of procyclic T. brucei, a situation that may reflect an adaptation to the partially hypoxic conditions in the insect host.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available