4.7 Article

Hydrodynamic interaction of strong shocks with inhomogeneous media. I. Adiabatic case

Journal

ASTROPHYSICAL JOURNAL
Volume 576, Issue 2, Pages 832-848

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/341886

Keywords

hydrodynamics; ISM : clouds; planetary nebulae : general; shock waves; stars : mass loss

Ask authors/readers for more resources

Many astrophysical flows occur in inhomogeneous (clumpy) media. We present results of a numerical study of steady, planar shocks interacting with a system of embedded cylindrical clouds. Our study uses a two-dimensional geometry. Our numerical code uses an adaptive mesh refinement, allowing us to achieve sufficiently high resolution both at the largest and the smallest scales. We neglect any radiative losses, heat conduction, and gravitational forces. Detailed analysis of the simulations shows that interaction of embedded inhomogeneities with the shock/postshock wind depends primarily on the thickness of the cloud layer and arrangement of the clouds in the layer. The total cloud mass and the total number of individual clouds is not a significant factor. We de ne two classes of cloud distributions: thin and thick layers. We define the critical cloud separation along the direction of the flow and perpendicular to it, distinguishing between the interacting and noninteracting regimes of cloud evolution. Finally, we discuss mass loading and mixing in such systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available