4.7 Article

Acyclic nucleoside analogues as novel inhibitors of human mitochondrial thymidine kinase

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 45, Issue 19, Pages 4254-4263

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm011128+

Keywords

-

Ask authors/readers for more resources

A series of acyclic nucleoside analogues of 5'-O-tritylthymidine have been synthesized and evaluated as potential human mitochondrial thymidine kinase (TK-2) inhibitors. In this series, the sugar moiety of the parent 5'-O-tritylthymidine has been replaced by aliphatic chains including (E)- and (Z)-butenol, butynol, or butanol. Among them the (Z)-butenyl derivative (10) showed an IC50 against TK-2 of 1.5 muM, being 1 order of magnitude more potent than the parent 5'-O-tritylthymidine. This lead compound has been further modified by replacing the thymine base by other pyrimidine bases such as 5-iodouracil, 5-ethyluracil, 5-methylcytosine, 3-N-methylthymine, or 5,6-dihydrothymine, as well as by the purine base guanine. The trityl group has also been replaced by different aliphatic and aromatic acyl moieties including tert-butylacetyl, hexanoyl, decanoyl, and diphenylacetyl moieties. The evaluation of the compounds against TK-2 and, the phylogenetically close HSV-1 TK has shown that the base moiety plays a crucial role in their interaction against these pyrimidine nucleoside kinases. Also, the presence of a lipophilic substituent, preferentially an aromatic moiety such as diphenylmethyl or triphenylmethyl, is required for efficient TK-2 inhibition. Whereas some compounds showed marked specificity for either TK-2 (i.e, the 5,6-dihydrothymine derivative, 26) or HSV-1 TK,(i.e., the butynyl derivative, 11), some others, including the (Z)-and (E)-butenyl derivatives 10 and 12, showed significant inhibition against both enzymes. They also proved to be inhibitory against HSV-1 TK in intact human osteosarcoma. cells that were transduced with the HSV-1 TK gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available