4.8 Article

Sequential activation and inactivation of G2 checkpoints for selective killing of p53-deficient cells by microtubule-active drugs

Journal

ONCOGENE
Volume 21, Issue 41, Pages 6249-6254

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1205793

Keywords

p53; mitosis; G2 arrest; checkpoints; paclitaxel

Ask authors/readers for more resources

By inducing p53-dependent G2 arrest, the pretreatment with low concentrations of DNA damaging drugs (e.g., doxorubicin, DOX) can prevent cell death caused by microtubule-active drugs (e.g., paclitaxel, PTX), thus potentially permitting selective killing of p53-deficient cancer cells. However, DOX still protects a subset of tumor cell lines lacking wt p53 (HL60 and Jurkat leukemia cells), thus limiting the utility of protection of cells with wt p53 (e.g., normal cells). The present work overcomes this obstacle by adding an abrogator of p53-independent checkpoint (e.g., UCN-01) to the DOX-PTX sequence. By inhibiting a p53-independent pathway, UCN-01 overrode DOX-induced G2 arrest and instead induced G1 arrest in HL60 and Jurkat, thus propelling these p53-deficient cells from G2 to G1. Once they entered mitosis, cells were killed by PTX. Induction of G2 arrest with sequential abrogation of a p53-independent checkpoint allows pharmacological manipulation of Raf-1/Bcl-2 hyperphosphorylation, PARP and Rb cleavage and cell death caused by PTX in p53-deficient cells. Unlike previous approaches, this strategy is intended to increase selectivity, not the cytotoxicity of PTX. This rational sequence of agents that induces p53-dependent and abrogates p53-independent arrest represents a cancer-selective strategy for treatment of p53-deficient tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available