4.6 Article

A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 37, Pages 34521-34530

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M203338200

Keywords

-

Ask authors/readers for more resources

Oct-3/4 is the earliest expressed transcription factor that is known to be crucial in murine pre-implantation development. In this report we asked whether methylation participates in controlling changes in Oct-3/4 expression and thus may play an important role in controlling normal embryogenesis. We show that the Oct-3/4 gene is unmethylated from the blastula stage but undergoes de novo methylation at 6.5 days post-coitum and remains modified in all adult somatic tissues analyzed. Oct-3/4 remains unmethylated in 6.25 days post-coitum epiblast cells when other genes, such as apoAI, undergo de novo methylation. We show that methylation of the Oct-3/4 promoter sequence strongly compromises its ability to direct efficient transcription. Moreover, DNA methylation inhibits basal transcription of the endogenous Oct-3/4 gene in vivo. We found that the Oct-3/4 gene harbors a cis-specific demodification element that includes the proximal enhancer sequence. This element leads to demethylation in embryonal carcinoma cells when the sequence is initially methylated and protects the local region from de novo methylation in post-implantation embryos. These results indicate that in the embryo protection from de novo methylation is not a unique feature of imprinted or housekeeping genes that carry a CpG island, but is also applicable to tissue-specific genes expressed during early stages of embryogenesis. Methylation of Oct-3/4 may be analogous to methylation of CpG islands on the inactive X chromosome that also occurs at later stages of development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available