4.6 Article

Erythropoietin modulates calcium influx through TRPC2

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 37, Pages 34375-34382

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205541200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 58672] Funding Source: Medline
  2. NIDDK NIH HHS [DK 46778] Funding Source: Medline
  3. NIGMS NIH HHS [GM 46991] Funding Source: Medline
  4. NINDS NIH HHS [NS 41363, NS 37716, NS 21925] Funding Source: Medline

Ask authors/readers for more resources

Mammalian isoforms of calcium-permeable Drosophila transient receptor potential channels (TRPC) are involved in the sustained phase of calcium entry in non-excitable cells. Erythropoietin (Epo) stimulates a rise in intracellular calcium ([Ca](i)) via activation of voltage-independent calcium channel(s) in erythroid cells. Here, involvement of murine orthologs of classical TRPC in the Epo-modulated increase in [Ca](i) was examined. RTPCR of TRPC 1-6 revealed high expression of only TRPC2 in Epo-dependent cell lines HCD-57 and Ba/F3 Epo-R, in which Epo stimulates a rise in [Ca](i). Using RT-PCR, Western blotting, and immunolocalization, expression of the longest isoform of mTRPC2, clone 14, was demonstrated in HCD-57 cells, Ba/F3 Epo-R cells, and primary murine erythroblasts. To determine whether erythropoietin is capable of modulating calcium influx through TRPC2, CHO cells were cotransfected with Epo-R subcloned into pTracer-CMV and either murine TRPC2 clone 14 or TRPC6, a negative control, into pQBI50. Successful transfection of Epo-R was verified in single cells by detection of green fluorescent protein from pTracer-CMV using digital video imaging, and successful transfection of TRPC was confirmed by detection of blue fluorescent protein fused through a flexible linker to TRPC. [Ca](i) changes were simultaneously monitored in cells loaded with Rhod-2 or Fura Red. Epo stimulation of CHO cells cotransfected with Epo-R and TRPC2 resulted in a rise in [Ca](i) above base line (372 +/- 71%), which was significantly greater (p less than or equal to 0.0007) than that seen in cells transfected with TRPC6 or empty pQBI50 vector. This rise in [Ca](i) required Epo and extracellular calcium. These results identify a calcium-permeable channel, TRPC2, in erythroid cells and demonstrate modulation of calcium influx through this channel by erythropoietin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available