4.7 Article

Approximating the inspiral of test bodies into Kerr black holes

Journal

PHYSICAL REVIEW D
Volume 66, Issue 6, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevD.66.064005

Keywords

-

Ask authors/readers for more resources

We present a new approximate method for constructing gravitational radiation driven inspirals of test bodies orbiting Kerr black holes. Such orbits can be fully described by a semilatus rectum p, an eccentricity e, and an inclination angle iota, or, by an energy E, an angular momentum component L-z, and a third constant Q. Our scheme uses expressions that are exact (within an adiabatic approximation) for the rates of change ((p)over dot, (e)over dot, (iota)over dot) as linear combinations of the fluxes ((E)over dot, (L)over dot(z),(Q)over dot), but uses quadrupole-order formulas for these fluxes. This scheme thus encodes the exact orbital dynamics, augmenting it with an approximate radiation reaction. Comparing inspiral trajectories, we find that this approximation agrees well with numerical results for the special cases of eccentric equatorial and circular inclined orbits, far more accurate than corresponding weak-field formulas for ((p)over dot, (e)over dot, (iota)over dot). We use this technique to study the inspiral of a test body in inclined, eccentric Kerr orbits. Our results should be useful tools for constructing approximate waveforms that can be used to study data analysis problems for the future Laser Interferometer Space Antenna gravitational-wave observatory, in lieu of waveforms from more rigorous techniques that are currently under development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available