4.6 Article

Titanium dioxide thin-film growth on silicon(111) by chemical vapor deposition of titanium(IV) isopropoxide

Journal

JOURNAL OF APPLIED PHYSICS
Volume 92, Issue 6, Pages 3381-3387

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1501751

Keywords

-

Ask authors/readers for more resources

The initial stages of TiO2 growth on Si(111) under ultra-high vacuum conditions is studied using core level photoelectron spectroscopy, x-ray absorption spectroscopy, and scanning tunneling microscopy. The TiO2 film was formed by means of chemical vapor deposition of titanium(IV) isopropoxide at a sample temperature of 500 degreesC. The thickness and composition of the amorphous interface layer and its subsequent transition to crystalline anatase TiO2 are discussed. Three different stages are identified: In the initial stage (film thickness <10 Angstrom), the oxygen atoms are coordinated mainly to Si atoms giving rise to Ti atoms with oxidation states lower than 4+. At this stage, a small amount of carbon (0.15 ML) is observed. The next stage (<25 Angstrom) is best described as an amorphous TiSixOy compound in which the oxidation state of Ti is 4+ and the x and y values vary monotonically with the film thickness, from 2 to 0 and 4 to 2, respectively. Finally (>30 Angstrom) a stoichiometric TiO2 layer starts to form. The TiO2 phase is anatase and the layer consists of particles similar to10 nm wide. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available