4.8 Article

Hydrogel-based microreactors as a functional component of microfluidic systems

Journal

ANALYTICAL CHEMISTRY
Volume 74, Issue 18, Pages 4647-4652

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac020340y

Keywords

-

Ask authors/readers for more resources

A simple two-step method for fabricating poly(ethylene glycol) (PEG) hydrogel-based microreactors and microsensors within microfluidic channels is described. The intrachannel micropatches contain either a dye, which can report the pH of a solution within a fluidic channel, or enzymes that are able to selectively catalyze specific reactions. Analytes present within the microfluidic channel are able to diffuse into the micropatches, encounter the enzymes, and undergo conversion to products, and then the products interact with the coencapsulated dye to signal the presence of the original substrate. The micropatches are prepared by photopolymerizing the PEG precursor within the channel of a microfluidic system consisting of a poly(dimethylsiloxane) mold and a glass plate. Exposure takes place through a slit mask oriented perpendicular to the channel, so the size of the resulting micropatch is defined by the channel dimensions and the width of the slit mask. Following polymerization, the mold is removed, leaving behind the micropatch(es) atop the glass substrate. The final microfluidic device is assembled by irreversibly binding the hydrogel-patterned glass slide to a second PDMS mold that contains a larger channel. Multiple micropatches containing the same or different enzymes can be fabricated within a single channel. The viability of this approach is demonstrated by sensing glucose using micropatches copolymerized with glucose oxidase, horseradish peroxidase, and a pH-sensitive dye.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available