4.5 Article

Immunohistochemical and electron microscopic study of invasion and differentiation in spinal cord lesion of neural stem cells grafted through cerebrospinal fluid in rat

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 69, Issue 6, Pages 940-945

Publisher

WILEY-LISS
DOI: 10.1002/jnr.10346

Keywords

neural stem cell; hippocampal cell; green-fluorescent protein-transgenic rat; spinal cord; immunoperoxidase

Categories

Ask authors/readers for more resources

Neurospheres were obtained by culturing hippocampal cells from transgenic rat fetuses (E16) expressing green fluorescent protein (GFP). The neurosphere cells were injected into the cerebrospinal fluid (CSF) through the 4th ventricle of young rats (4 weeks old) that had been given a contusion injury at T8-9 of the spinal cord. The injected neural stem cells were transported through the CSF to the spinal cord, attached to the pial surface at the lesion, and invaded extensively into the spinal cord tissue as well as into the nerve roots. The grafted stem cells survived well in the host spinal cord for as long as 8 months after transplantation. Immunohistochemical study showed that many grafted stem cells had differentiated into astrocytes at 1-4 months, and some into oligodendrocytes at 8 months postoperatively. Immunoelectron microscopy showed that the grafted stem cells were well integrated into the host tissue, extending their processes around nerve fibers in the same manner as astrocytes. In addition, grafted stem cells within nerve roots closely surrounded myelinated fibers or were integrated into unmyelinated fiber bundles; those associated with myelinated fibers formed basal laminae on their free surface, whereas those associated with unmyelinated fibers were directly attached to axons and Schwann cells, indicating that grafted stem cells behaved like Schwann cells in the nerve roots. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available