4.8 Article

Allowed and forbidden transitions in artificial hydrogen and helium atoms

Journal

NATURE
Volume 419, Issue 6904, Pages 278-281

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature00976

Keywords

-

Ask authors/readers for more resources

The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons(1). Experiments have shown(2-5) similar electron occupation of the quantized energy levels in semiconductor quantum dots-often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material(6). Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 mus for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available