4.6 Article

Phospholipase C-γ modulates epithelial tight junction permeability through hyperphosphorylation of tight junction proteins

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 38, Pages 35760-35765

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M203134200

Keywords

-

Ask authors/readers for more resources

Phospholipase C-gamma (PLC-gamma) is stimulated by epidermal growth factor via activation of the epidermal growth factor receptors. The PLC inhibitor, 3-nitrocoumarin (3-NC), selectively inhibited PLC-gamma in Madin-Darby canine kidney cells without affecting the activity of PLC-beta. In contrast, inhibitors of PLC-beta, hexadecylphosphocholine and U73122, had no effect on the activity of PLC-gamma. Inhibition of PLC-gamma by 3-NC was associated with an increase in tight junction permeability across Madin-Darby canine kidney cell monolayers, as evidenced by 3-NC-induced decrease in transepithelial electrical resistance and increase in mannitol flux over a concentration range that was inhibitory to PLC-gamma. An analog of 3-NC, 7-hydroxy-3-NC (7-OH-3-NC), which was inactive as an inhibitor of PLC-gamma, also had no effect on tight junction permeability. Treatment with 3-NC caused punctate disruption in the cortical actin filaments. The PLC-gamma inhibitor, 3-NC, but not the inactive analog, 7-OH-3-NC, caused hyperphosphorylation of the tight junction proteins, occludin, ZO-1, and ZO-2. The serine/threonine kinase inhibitor, staurosporine (50-200 nM), significantly attenuated 3-NC-induced hyperphosphorylation of ZO-2. This corresponded with attenuation by staurosporine of 3-NC-induced increase in tight junction permeability, suggesting a relationship between ZO-2 phosphorylation and tight junction permeability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available