4.7 Article

Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation - Distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes

Journal

CIRCULATION RESEARCH
Volume 91, Issue 6, Pages 532-539

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000035242.96310.45

Keywords

thrombin; protease-activated receptors; cardiac fibroblasts; epidermal growth factor receptors; signal transduction

Funding

  1. NHLBI NIH HHS [HL-64639] Funding Source: Medline

Ask authors/readers for more resources

Proteases elaborated by inflammatory cells in the heart would be expected to drive cardiac fibroblasts to proliferate, but protease-activated receptor (PAR) function in cardiac fibroblasts has never been considered. This study demonstrates that PAR-1 is the only known PAR family member functionally expressed by cardiac fibroblasts and that PAR-1 activation by thrombin leads to increased DNA synthesis in cardiac fibroblasts. The increase in DNA synthesis induced by PAR-1 substantially exceeds the effects of other G protein-coupled receptor agonists in this cell type. PAR-1 stimulates phosphoinositide hydrolysis and mobilizes intracellular calcium via pertussis toxin (PTX)-sensitive and PTX-insensitive pathways. Activation of PAR-1 leads to an increase in Src, Fyn, and epidermal growth factor receptor (EGFR) phosphorylation, with EGFR receptor transactivation by Src family kinases the major mechanism for PAR-1-dependent activation of extracellular signal-regulated kinase, p38-mitogen-activated protein kinase, and protein kinase B. Activation of PAR-1 also leads to an increase in DNA synthesis. PAR-1 signaling is highly contextual in nature, inasmuch as PAR-1 activates extracellular signal-regulated kinase and only weakly stimulates protein kinase B via a pathway that does not involve EGFR transactivation in cardiomyocytes. PAR-1 responses in cardiac fibroblasts and cardiomyocytes are predicted to contribute importantly to remodeling during cardiac injury and/or inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available