4.6 Article

Protein kinase C-ζ regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-α in glioma cells via NF-κB

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 38, Pages 35150-35155

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M108600200

Keywords

-

Ask authors/readers for more resources

The regulation of matrix metalloproteinase-9 (MMP-9) expression in glioma cells is one of the key processes in tumor invasion through the brain extracellular matrix. Although some studies have demonstrated the implication of classic protein kinase C (PKC) isoforms in the regulation of AMP-9 production by phorbol esters or lipopolysaccharide, the involvement of specific PKC isoforms in the signaling pathways leading to MMP-9 expression by inflammatory cytokines remains unclear. Here we report that the atypical PKC-zeta isoform participates in the induction of AMP-9 expression by interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) in rat C6 glioma cells. Indeed, zymography and semi-quantitative reverse transcriptase-PCR analysis showed that pretreatment of C6 cells with PKC-zeta pseudosubstrate abolished AMP-9 activity and gene expression induced by IL-1 or TNIF-alpha. Accordingly, IL-1 and TNF-alpha were able to induce PKC-zeta activity, as demonstrated by in vitro kinase assay using immunoprecipitated PKC-zeta. Furthermore, stable C6 clones overexpressing PKC-zeta, but not PKC-epsilon, displayed an up-regulation of NMP-9 constitutive expression as well as an increase of mmp-9 promoter activity. These processes were inhibited by an NF-kappaB-blocking peptide and completely prevented by NF-kappaB-binding site mutation in the mmp-9 promoter. Taken together, these results indicate that PKC-zeta plays a key role in the regulation of MMP-9 expression in C6 glioma cells through NF-kappaB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available