4.6 Article

Polarization of myosin II heavy chain-protein kinase C in chemotaxing Dictyostelium cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 39, Pages 36005-36008

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205986200

Keywords

-

Ask authors/readers for more resources

Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin 11 heavy chain kinase (MHC-PKC) and myosin H translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin H, allowing cell polarization and movement in the direction of the cAMP source.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available