4.6 Article

Activation of macrophages by linear (1→3)-β-D-glucans -: Implications for the recognition of fungi by innate immunity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 39, Pages 36825-36831

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206756200

Keywords

-

Ask authors/readers for more resources

Although (1-->3)-beta-D-glucans, which are one of major fungal cell wall components, are known to activate invertebrate innate immune systems, their activities on mammalian cells remain elusive. Here, we report their activities on mouse macrophages. Among the various (1-->3)-p-D-glucans, curdlan, a linear (1-->3)-beta-D-glucan, although not branched beta-glucans, exhibits significant activity to stimulate nuclear factor-kappaB in macrophages. The activity of curdlan is dramatically enhanced by pretreatment with sodium hydroxide or dimethyl sulfoxide, which disrupts multiple-stranded helices of (1-->3)-beta-Dglucans, and is dose-dependently inhibited by a (1-->3)-beta-D-glucan-binding protein and by laminarioligosaccharides with (1-->3)-beta-D-glucosidic linkages. Intriguingly, the activity of curdlan is also augmented by incubation with zymolyase, which releases (1-->3)-beta-D-glucans with a single helical structure from the glucan-networks assembled by multiple-stranded helices. The activation of macrophages culminates in the production of inducible nitric-oxide synthase, tumor necrosis factor-alpha, and macrophage inflammatory protein-2. Furthermore, a dominant-negative mutant of MyD88, an adaptor protein mediating signaling through the Toll-like receptor/inerleukin-1 receptor-like (TIR) domain, inhibits the activation of macrophages by curdlan. These results strongly suggest that macrophages respond to linear (1-->3)-beta-D-glucans, possibly released from fungal cell walls, via a receptor(s) harboring the TIR domain, such as a Toll-like receptor, to induce inflammatory reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available