4.6 Article

Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 39, Pages 36076-36084

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205638200

Keywords

-

Funding

  1. NCI NIH HHS [CA77839] Funding Source: Medline
  2. NIA NIH HHS [AG05144, AG16835] Funding Source: Medline
  3. NIDDK NIH HHS [DK48831] Funding Source: Medline
  4. NIGMS NIH HHS [GM42056, GM07569, GM15431] Funding Source: Medline

Ask authors/readers for more resources

Free radical-initiated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. Docosahexaenoic acid is the most abundant unsaturated fatty acid in the central nervous system. We have shown previously that this 22-carbon fatty acid can yield, upon oxidation, isoprostane-like compounds termed neuroprostanes, with E/D-type prostane rings (E-4/D-4-neuroprostanes). Eicosanoids with E/D-type prostane rings are unstable and dehydrate to cyclopentenone-containing compounds possessing A-type and J-type prostane rings, respectively. We thus explored whether cyclopentenone neuroprostanes (A(4)/(4)-neuroprostanes) are formed from the dehydration of E-4/D-4-neuroprostanes. Indeed, oxidation of docosahexaenoic acid in vitro increased levels of putative A(4)/J(4)-neuroprostanes 64-fold from 88 +/- 43 to 5463 +/- 2579 ng/mg docosahexaenoic acid. Chemical approaches and liquid chromatography/electrospray ionization tandem mass spectrometry definitively identified them as A(4)/J(4)-neuroprostanes. We subsequently showed these compounds are formed in significant amounts from a biological source, rat brain synaptosomes. A(4)/J(4)-neuroprostanes increased 13-fold, from a basal level of 89 +/- 72 ng/mg protein to 1187 +/- 217 ng/mg (n = 4), upon oxidation. We also detected these compounds in very large amounts in fresh brain tissue from rats at levels of 97 +/- 25 ng/g brain tissue (n = 3) and from humans at levels of 98 +/- 26 ng/g brain tissue (n = 5), quantities that are nearly an order of magnitude higher than other classes of neuroprostanes. Because of the fact that A(4)/J(4)-neuroprostanes contain highly reactive cyclopentenone ring structures, it would be predicted that they readily undergo Michael addition with glutathione and adduct covalently to proteins. Indeed, incubation of A(4)/J(4)-neuroprostanes in vitro with excess glutathione resulted in the formation of large amounts of adducts. Thus, these studies have identified novel, highly reactive A/J-ring isoprostane-like compounds that are derived from docosahexaenoic acid in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available