4.6 Article

Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-β in pancreatic tumor cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 39, Pages 36118-36128

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M203709200

Keywords

-

Ask authors/readers for more resources

Overexpression of the small leucine-rich proteoglycan biglycan (BGN) in fibrosis and desmoplasia results from enhanced activity of transforming growth factor-P (TGF-beta). In pancreatic adenocarcinoma, the tumor cells themselves may contribute to, BGN synthesis in vivo, since 8 of 18 different pancreatic carcinoma cell lines constitutively expressed BGN mRNA, as shown by reverse transcription-PCR analysis. In PANC-1 cells, TGF-beta1 dramatically stimulated BGN mRNA accumulation through a BGN transcription-independent, cycloheximide-sensitive mechanism and strongly increased the synthesis and release of the proteoglycan form of BGN. The ability of TGF-beta1 to induce BGN mRNA was critically dependent on Smad signaling, since 1) the upregulation of BGN mRNA was preceded by a marked increase in Smad2 phosphorylation in TGF-beta1-treated PANC-1 cells, 2) TGF-beta1 was unable to induce BGN mRNA in pancreatic carcinoma cell lines that carry homozygous deletions of the Smad4/DPC4 gene, 3) inhibition of the Smad pathway in PANC-1 cells by transfection with a dominant negative Smad4/DPC4 mutant significantly reduced TGF-beta1-induced BGN mRNA expression, 4) stable reintroduction of wild type Smad4/DPC4 into Smad4-null CFPAC-1 cells restored the TGF-beta1 effect, and 5) overexpression of Smad2 and Smad3 in PANC-1 cells augmented TGF-beta1 induction of BGN mRNA, whereas forced expression of Smad7, an inhibitory Smad, effectively blocked it. These results clearly show that a functional Smad pathway is crucial for TGF-beta regulation of BGN mRNA expression. Since BGN has been shown to inhibit growth of pancreatic cancer cells, the Smad4/DPC4 mediation of the TGF-beta effect may represent a novel tumor suppressor function for Smad4/DPC4: antiproliferation via expression of autoinhibitory BGN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available