4.6 Article Proceedings Paper

Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic

Journal

MATHEMATICS AND COMPUTERS IN SIMULATION
Volume 60, Issue 3-5, Pages 245-276

Publisher

ELSEVIER
DOI: 10.1016/S0378-4754(02)00019-8

Keywords

Pareto-optimality; multi-objective optimization; fuzzy logic; flexible job-shop scheduling problem; approach by localization; controlled evolutionary algorithms

Ask authors/readers for more resources

Most scheduling problems are complex combinatorial problems and very difficult to solve [Manage. Sci. 35 (1989) 164; F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, Holden-Day, San Francisco, CA, 1967]. That is why, lots of methods focus on the optimization according to a single criterion (makespan, workloads of machines, waiting times, etc.). The combining of several criteria induces additional complexity and new problems. In this paper, we propose a Pareto approach based on the hybridization of fuzzy logic (FL) and evolutionary algorithms (EAs) to solve the flexible job-shop scheduling problem (FJSP). This hybrid approach exploits the knowledge representation capabilities of FL [Fuzzy Sets Syst. 1 (1989)] and the adaptive capabilities of EAs. The integration of these two methodologies for the multi-objective optimization has become an increasing interest. The objective considered is to minimize the overall completion time (makespan), the total workload of machines and the workload of the most loaded machine. Many examples are presented to illustrate some theoretical considerations and to show the efficiency of the suggested methodology. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available