4.7 Article Proceedings Paper

Multiscale simulation of laser ablation of organic solids: evolution of the plume

Journal

APPLIED SURFACE SCIENCE
Volume 197, Issue -, Pages 27-34

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-4332(02)00298-2

Keywords

molecular dynamics; Monte Carlo; clusters; spatial distribution

Ask authors/readers for more resources

A computational approach that combines the molecular dynamics (MD) breathing sphere model for simulation of the initial stage of laser ablation and the direct simulation Monte Carlo (DSMC) method for simulation of the multi-component ablation plume development on the time- and length-scales of real experimental configurations is presented. The combined multiscale model addresses different processes involved in the laser ablation phenomenon with appropriate resolutions and, at the same time, accounts for the interrelations among the processes. Preliminary results demonstrate the capabilities of the model and provide new insights into complex processes occurring during the ablation plume expansion. The spatial distribution of monomers in the plume is found to be strongly affected by the presence of large clusters. Interaction between the clusters and monomers can result in splitting of the monomer distribution into faster and slower components. The overall spatial mass distribution is found to have little relation with the monomer distribution. (C) 2002 Elsevier Science B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available