4.4 Article

Subcellular recruitment of fibrillarin to nucleoplasmic proteasomes: Implications for processing of a nucleolar autoantigen

Journal

MOLECULAR BIOLOGY OF THE CELL
Volume 13, Issue 10, Pages 3576-3587

Publisher

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.02-05-0083

Keywords

-

Categories

Ask authors/readers for more resources

A prerequisite for proteins to interact in a cell is that they are present in the same intracellular compartment. Although it is generally accepted that proteasomes occur in both, the cytoplasm and the nucleus, research has been focusing on cytoplasmic protein breakdown and antigen processing, respectively. Thus, little is known on the functional organization of the proteasome in the nucleus. Here we report that within the nucleus 20S and 26S proteasomes occur throughout the nucleoplasm and partially colocalize with splicing factor-containing speckles. Because proteasomes are absent from the nucleolus, a recruitment system was used to analyze the molecular fate of nucleolar protein fibrillarin: Subtoxic concentrations of mercuric chloride (HgCl2) induce subcellular redistribution of fibrillarin and substantial colocalization (33%) with nucleoplasmic proteasomes in different cell lines and in primary cells isolated from mercury-treated mice. Accumulation of fibrillarin and fibrillarin-ubiquitin conjugates in lactacystin-treated cells suggests that proteasome-dependent processing of this autoantigen occurs upon mercury induction. The latter observation might constitute the cell biological basis of autoimmune responses that specifically target fibrillarin in mercury-mouse models and scleroderma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available