4.7 Article

Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12

Journal

NEUROBIOLOGY OF DISEASE
Volume 11, Issue 1, Pages 2-19

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/nbdi.2002.0542

Keywords

Alzheimer's disease; endoplasmic reticulum; hippocampal neurons; PARP; topoisomerase

Categories

Ask authors/readers for more resources

Mutations in presenilin-1 (PS1) can cause early onset familial Alzheimer's disease (AD). Studies of cultured cells and mice expressing mutant PS1 suggest that PS1 mutations may promote neuronal dysfunction and degeneration by altering cellular calcium homeostasis. On the other hand, it has been suggested that age-related damage to DNA in neurons may be an important early event in the pathogenesis of AD. We now report that PC12 cells and primary hippocampal neurons expressing mutant PS1 exhibit increased sensitivity to death induced by DNA damage. The hypersensitivity to DNA damage is correlated with increased intracellular Ca2+ levels, induction of p53, upregulation of the Ca2+-dependent protease m-calpain, and mitochondrial membrane depolarization. Moreover, activation of caspase-12, an endoplasmic reticulum (ER)-associated caspase, is greatly increased in cells expressing mutant PS1. DNA damage-induced death of cells expressing mutant PS1 was attenuated by inhibitors of calpains I and 11, by an intracellular Ca2+ chelator, by the protein synthesis inhibitor cycloheximide, and by a broad-spectrum caspase inhibitor, but not by an inhibitor of caspase-1. Agents that release Ca2+ from the ER increased the vulnerability of cells expressing mutant PS1 to DNA damage. By promoting ER-mediated apoptatic proteolytic cascades, PS1 mutations may sensitize neurons to DNA damage. (C) 2002 Elsevier Science (USA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available