4.7 Article

Melatonin synthesis enzymes in Macaca mulatta:: Focus on arylalkylamine N-acetyltransferase (EC 2.3.1.87)

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 87, Issue 10, Pages 4699-4706

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2002-020683

Keywords

-

Ask authors/readers for more resources

Arylalkylamine N-acetyltransferase (AANAT; serotonin N-acetyltransferase, EC 2.3.1.87) plays a unique transduction role in vertebrate physiology as the key interface between melatonin production and regulatory mechanisms. Circulating melatonin is elevated at night in all vertebrates, because AANAT activity increases in the pineal gland in response to signals from the circadian clock. Circadian regulation of melatonin synthesis is implicated in a variety of human problems, including jet lag, shift work, insomnia, and abnormal activity rhythms in blind persons. In this report AANAT was studied in the rhesus macaque to better understand human melatonin regulation. AANAT mRNA is abundant in the pineal gland and retina, but not elsewhere; AANAT mRNA is uniformly distributed in the pineal gland, but is limited primarily to the photoreceptor outer segments in the retina. Day and night levels of pineal and retinal AANAT mRNA are similar. In contrast, AANAT activity and protein increase more than 4-fold at night in both tissues. The activity of hydroxyindole-O-methyltransferase, the last enzyme in melatonin synthesis, is tonically high in the pineal gland, but is nearly undetectable in the retina; hydroxyindole O-methyltransferase mRNA levels exhibited a similar pattern. This supports the view that the source of circulating melatonin in primates is the pineal gland. The discovery in this study that rhesus pineal AANAT mRNA is high at all times is of special importance because it shows that posttranscriptional control of this enzyme plays a dominant role in regulating melatonin synthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available