4.3 Article

Dendritic cells, chemokine receptors and autoimmune inflammatory diseases

Journal

IMMUNOLOGY AND CELL BIOLOGY
Volume 80, Issue 5, Pages 497-505

Publisher

WILEY
DOI: 10.1046/j.1440-1711.2002.01118.x

Keywords

autoimmune inflammatory lesions; chemokines; chemokine receptors; dendritic cells

Ask authors/readers for more resources

Dendritic cells (DC) have been implicated in the induction of autoimmune diseases and have been identified in lesions associated with several autoimmune inflammatory diseases. Since DC are regarded as the professional antigen-presenting cell (APC) of the immune system and the only APC capable of activating naive T cells, they are likely to play a significant role in breaking tolerance of self-reactive lymphocytes and in supporting autoimmune responses in these diseases. A number of studies have revealed that small molecular weight chemotactic proteins known as chemokines are present within the autoimmune lesions and may contribute to the recruitment not only of DC populations, but also of immune cells such as T cells, B cells, neutrophils and monocytes into the site, and to the formation of organized lymphoid tissue structures within the target organ. The focus of this review will be a discussion of the role of chemokines in the recruitment of DC in human autoimmune inflammatory disorders, specifically the trafficking of DC into the inflammatory sites and the subsequent migration of differentiated DC from the inflammatory sites into the draining lymph nodes. Once DC are properly positioned within the lymph nodes, circulating antigen specific naive T cells can interact with DC and become activated, clonally expanded and stimulated to undergo differentiation into antigen-experienced memory T cells. Subsequent reactivation of memory T cells that enter the autoimmune lesions by DC present in the inflammatory lesion is thought to play a central role in tissue inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available