4.7 Article

THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD

Journal

ASTROPHYSICAL JOURNAL
Volume 723, Issue 1, Pages 457-475

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/723/1/457

Keywords

ISM: clouds; ISM: individual objects (Perseus Molecular Cloud); ISM: kinematics and dynamics; ISM: molecules; turbulence

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. SAO
  3. Association of Universities for Research in Astronomy, Inc. under NSF [AF002, AST-9613615]
  4. Fundacion Andes [C-13442]
  5. NRAO [GSSP06-0015, GSSP08-0031]
  6. National Science Foundation [AST-0407172, AST-0908159]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Astronomical Sciences [0908159] Funding Source: National Science Foundation

Ask authors/readers for more resources

We utilize the extensive data sets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the (13)CO gas, about one third of the (13)CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total ((13)CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) proportional to k(-4).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available