4.7 Article

Artificial neural networks for job shop simulation

Journal

ADVANCED ENGINEERING INFORMATICS
Volume 16, Issue 4, Pages 241-246

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S1474-0346(03)00005-3

Keywords

artificial neural networks; metamodeling; job shop simulation; manufacturing lead time

Ask authors/readers for more resources

This paper explores the use of artificial neural networks (ANNs) as a valid alternative to the traditional job-shop simulation approach. Feed forward, multi-layered neural network metamodels were trained through the back-error-propagation (BEP) learning algorithm to provide a versatile job-shop scheduling analysis framework. The constructed neural network architectures were capable of satisfactorily estimating the manufacturing lead times (MLT) for orders simultaneously processed in a four-machine job shop. The MLTs produced by the developed ANN models turned out to be as valid as the data generated from three well-known simulation packages, i.e. Arena, SIMAN, and ProModel. The ANN outputs proved not to be substantially different from the results provided by other valid models such as SIMAN and ProModel when compared against the adopted baseline, Arena. The ANN-based simulations were able to fairly capture the underlying relationship between jobs' machine sequences and their resulting average flowtimes, which proves that ANNs are a viable tool for stochastic simulation metamodeling. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available