4.7 Article

RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS

Journal

ASTROPHYSICAL JOURNAL
Volume 715, Issue 2, Pages 1006-1011

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/715/2/1006

Keywords

black hole physics; galaxies: evolution; gravitational waves

Funding

  1. Sherman Fairchild Foundation
  2. NSF [PHY-0601459, PHY-090003, PHY-0900735, PHY-0652995]
  3. FCT-Portugal [PTDC/CTE-AST/098034/2008, PTDC/FIS/098032/2008]
  4. NASA [NNX07AH06G]
  5. Direct For Mathematical & Physical Scien
  6. Division Of Physics [0900735] Funding Source: National Science Foundation
  7. Fundação para a Ciência e a Tecnologia [PTDC/FIS/098032/2008, PTDC/CTE-AST/098034/2008] Funding Source: FCT

Ask authors/readers for more resources

Numerical-relativity simulations indicate that the black hole produced in a binary merger can recoil with a velocity up to v(max) similar or equal to 4000 km s(-1) with respect to the center of mass of the initial binary. This challenges the paradigm that most galaxies form through hierarchical mergers, yet retain supermassive black holes (SBHs) at their centers despite having escape velocities much less than vmax. Interaction with a circumbinary disk can align the binary black hole spins with their orbital angular momentum, reducing the recoil velocity of the final black hole produced in the subsequent merger. However, the effectiveness of this alignment depends on highly uncertain accretion flows near the binary black holes. In this paper, we show that if the spin S-1 of the more massive binary black hole is even partially aligned with the orbital angular momentum L, relativistic spin precession on sub-parsec scales can align the binary black hole spins with each other. This alignment significantly reduces the recoil velocity even in the absence of gas. For example, if the angle between S-1 and L at large separations is 10 degrees. while the second spin S-2 is isotropically distributed, the spin alignment discussed in this paper reduces the median recoil from 864 km s(-1) to 273 km s(-1) for maximally spinning black holes with a mass ratio of 9/11. This reduction will greatly increase the fraction of galaxies retaining their SBHs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available