4.0 Article

Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge

Journal

TISSUE ENGINEERING
Volume 8, Issue 5, Pages 827-837

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/10763270260424187

Keywords

-

Ask authors/readers for more resources

Articular cartilage has limited capacity for repair. In the present study, tissue-engineered two-phase composite material was used for the repair of osteochondral defects in young adult rabbit knee. This composite material is composed of an injectable calcium phosphate (ICP) and a hyaluronan (HA) derivate of either ACP or HYAFF 11 sponge. The osteochondral defect, 3 mm in diameter and 3 mm deep, was created in the weight-bearing region of the medial femoral condyle. The bone portion of the defect was first filled with ICP to a level approximately 1 rum below the articular surface. HA sponge (3 rum in diameter and 1-1.2 nun thick), with or without loading of autologous bone marrow-derived progenitor cells (MPCs), was then inserted into the defect on top of the ICP as it hardened. Animals were allowed free cage activity postoperatively, and killed 4 or 12 weeks (for the HYAFF 11 sponge group) after the surgery. At 4 weeks, histological examination showed that the defect was filled up to 90-100% of its depth. Whitish repair tissue on the top appeared to be integrated with the surrounding articular cartilage. Four distinct zones of repair tissue were identified: a superficial layer, a chondroid tissue layer, an interface between HA sponge and ICP, and the ICP material. Evidence of extensive osteoclastic and osteoblastic activities was observed in the bone tissue surrounding the defect edge and in ICP material. By 12 weeks, the zonal features of the repair tissue became more distinct; chondrocytes were arranged in a columnar array, and a calcified layer of cartilage was formed beneath the chondroid tissue in some specimens. The healing tissue of the HA sponge material loaded with MPCs had higher cellular density and better integration with the surrounding cartilage than HA sponge material not loaded with MPCs. This study suggests that using a two-phase composite graft may hold potential for the repair of osteochondral defects by providing mechanical support that mimicks subchondral bone, while also providing a chondrogenic scaffold for the top cartilage repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available