4.7 Article

PROBING EXTRAGALACTIC DUST THROUGH NEARBY GAMMA-RAY BURST AFTERGLOWS

Journal

ASTROPHYSICAL JOURNAL
Volume 710, Issue 1, Pages 648-662

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/710/1/648

Keywords

dust, extinction; gamma rays: general

Funding

  1. NASA
  2. NSFC Outstanding Oversea Young Scholarship

Ask authors/readers for more resources

The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z < 2 are derived from fitting their afterglow spectral energy distributions. Unlike previous studies which often assume a specific extinction law like that of the Milky Way (MW) and the Large and Small Magellanic Clouds (LMC/SMC), our approach-we call it the Drude approach-is more flexible in determining the true wavelength dependence of the extinction (while the shape of the extinction curve inferred from that relying on a priori assumption of a template extinction law is, of course, fixed). The extinction curves deduced from the Drude approach display a wide diversity of shapes, ranging from relatively flat curves to curves which are featureless and steeply rise toward the far-ultraviolet, and from curves just like that of the MW, LMC, and SMC to curves resembling that of the MW and LMC but lacking the 2175 angstrom bump. The visual extinction A(V) derived from the Drude approach is generally larger by a factor of similar to 2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available