4.7 Article

Glycolate metabolism in algal chloroplasts: inhibition by salicylhydroxamic acid (SHAM)

Journal

PHYSIOLOGIA PLANTARUM
Volume 116, Issue 2, Pages 264-270

Publisher

BLACKWELL MUNKSGAARD
DOI: 10.1034/j.1399-3054.2002.1160217.x

Keywords

-

Categories

Ask authors/readers for more resources

Unicellular green algae such as Chlamydomonas and Dunaliella excrete small amounts of glycolate during active photosynthesis. This phenomenon has been explained by the fact that these algae do not have leaf-type peroxisomes and glycolate oxidase; instead, they have a limited capacity to metabolise glycolate in their mitochondria by a membrane-associated glycolate dehydrogenase. Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase in plant and algal mitochondria, stimulates glycolate excretion by the algae or their isolated chloroplasts 5-fold. In the presence of SHAM, cells of Chlamydomonas or Dunaliella grown with high-CO2 (5% CO2 in air, v/v) or adapted with air levels of CO2 excreted glycolate at a rate of about 14 mumol glycolate mg(-1) Chl h(-1) . Aminooxyacetate (AOA), an inhibitor of aminotransferases, also increases glycolate excretion by the algal cells or chloroplasts but at a lower rate (about 50%) than SHAM. The algal, light dependent, SHAM-sensitive glycolate oxidizing system in the chloroplasts appears to be the primary site for glycolate oxidation, and it is different and more active then the minor mitochondrial glycolate dehydrogenase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available