4.6 Article

Mycobacterium avium complex promotes recruitment of monocyte hosts for HIV-1 and bacteria

Journal

JOURNAL OF IMMUNOLOGY
Volume 169, Issue 7, Pages 3854-3862

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.169.7.3854

Keywords

-

Categories

Funding

  1. FIC NIH HHS [TW00943] Funding Source: Medline
  2. NIDCR NIH HHS [N01-DE-12585] Funding Source: Medline

Ask authors/readers for more resources

In lymphoid tissues coinfected with Mycobacterium avium complex (MAC) and HIV-1, increased viral replication has been observed. This study investigates the role of MAC in perpetuating both infections through the recruitment of monocytes as potential new hosts for bacteria and HIV-1. Increased numbers of macrophages were present in the lymph nodes of patients with dual infection as compared with lymph nodes from HIV+ patients with no known opportunistic pathogens. In a coculture system, monocyte-derived macrophages were treated with HIV-1 or M. avium and its constituents to further define the mechanism whereby MAC infection of macrophages initiates monocyte migration. Monocyte-derived macrophages treated with bacteria or bacterial products, but not HIV-1, induced a rapid 2- to 3-fold increase in recruitment of monocytes. Pretreatment of the monocytes with pertussis toxin inhibited the migration of these cells, indicating a G protein-linked pathway is necessary for induction of chemotaxis and thus suggesting the involvement of chemokines. Analysis of chemokine mRNA and protein levels from M. avium-treated cultures revealed MAC-induced increases in the expression of IL-8, macrophage-inflammatory protein (MIP)-lalpha, and MIP-1beta with donor-dependent changes in monocyte chemotactic protein-1. Pyrrolidine dithiocarbamate, an antioxidant, inhibited the activation of NF-kappaB and significantly diminished the MAC-induced chemotaxis, concurrently lowering the levels of monocyte chemotactic protein-1 and MIP-1beta. These data demonstrate that MAC induces macrophage production of multiple chemotactic factors via NF-kappaB to promote monocyte migration to sites of MAC infection. In vivo, opportunistic infection may act as a recruitment mechanism in which newly arrived monocytes serve as naive hosts for both MAC and HIV-1, thus perpetuating both infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available