4.6 Article

Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 17, Issue 10, Pages 1785-1794

Publisher

WILEY
DOI: 10.1359/jbmr.2002.17.10.1785

Keywords

MAPK; mineralization; bone morphogenetic protein; osteoblastic differentiation; inhibitor

Ask authors/readers for more resources

We screened the small molecule compounds that stimulate osteogenesis by themselves or promote bone morphogenetic protein (BMP)-induced bone formation. We found that a specific inhibitor for MAPK/ extracellular signal-regulated kinase kinase (MEK)-1, promoted the early osteoblastic differentiation and mineralization of extracellular matrix (ECM) in C2C12 pluripotent mesenchymal cells treated with recombinant human BMP-2 (rhBMP-2) and MC3T3-E1 preosteoblastic cells. ALP activity was synergistically increased by the treatment with a specific MEK-1 inhibitor PD98059 and rhBMP-2 in both cell lines. Twenty-five micromolar PD98059 promoted mineralization of ECM in rhBMP-2-treated C2C12 cells and MC3T3-E1 cells. In contrast, PD98059 reduced osteocalcin (OCN) secretion and its transcriptional level in rhBMP-2-treated C2C12 cells but increased its secretion and mRNA level in MC3T3-E1 cells. Stable expression of a dominant-negative MEK-1 mutant in C212 cells represented high ALP activity and low osteocalcin production in the presence of rhBMP-2, while a constitutively active mutant of MEK-1 attenuated both of them. Together, our results indicated that BMP-2-induced mineralization of ECM of pluripotent mesenchymal stem cells and preosteoblastic cells could be controlled by a fine tuning of the MAPK signaling pathway. Further, MEK-1 inhibitors would be useful for the promotion of bone formation, for instance, the treatments for delayed fracture healing or advance of localized osteoporotic change after fracture healing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available