4.7 Article

Characterization of proteolysis during the ripening of semi-dry fermented sausages

Journal

MEAT SCIENCE
Volume 62, Issue 2, Pages 205-216

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0309-1740(01)00248-0

Keywords

proteolysis; proteolytic enzymes; peptides

Ask authors/readers for more resources

The respective contribution of indigenous enzymes and enzymes from starter bacteria to proteolysis in fermented sausages were determined by comparing the proteolytic changes occurring in sausages resulting from the presence of a proteolytic strain of Staphylococcus carnosus. i.e, S. carnosus MC I to the proteolytic changes occurring in control sausages containing glucono-delta-lactone (GDL) and an antibiotic mixture. Proteolysis was quantified by assaying for non-protein nitrogen (NPN) and free amino acids. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed phase high performance liquid chromatography (RP-HPLC) were used to qualitatively assess the proteolytic changes in the sarcoplasmic and myofibrillar proteins as ripening progressed. The concentration of NPN and free amino acids increased in both sausages initially, but subsequently decreased towards the end of ripening in sausages inoculated with the starter culture. SDS-PAGE showed a similar pattern of proteolysis of sarcoplasmic proteins in both sausages. while of the two sausage types the S. carnosus MC I inoculated sausages exhibited the most intense degradation of myofibrillar proteins, especially myosin and actin. RP-HPLC profiles of 2% trichloroacetic acid (TCA)-soluble peptides for the two sausage types were similar. with the production of numerous hydrophilic peptides. N-Terminal amino acid sequence analysis and sequence homology with proteins of known primary structure showed that six of the TCA-soluble peptides were released from the sarcoplasmic (myoglobin and creatine kinase) and myofibrillar (troponin-1, troponin-T and myosin light chain-2) proteins. In addition, the initial degradation of sareoplasmic proteins was due to the activity of indigenous proteinases. while both indigenous and bacterial enzymes contributed to the initial degradation of myofibrillar proteins. Furthermore, indigenous enzymes were responsible for the release of TCA-soluble peptides, which, were further hydrolysed by bacterial enzymes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available