4.3 Article Proceedings Paper

Resonance and selective communication via bursts in neurons having subthreshold oscillations

Journal

BIOSYSTEMS
Volume 67, Issue 1-3, Pages 95-102

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0303-2647(02)00067-9

Keywords

frequency preference; resonators; doublet; triplet; burst; Hopf bifurcation

Ask authors/readers for more resources

Revealing the role of bursts of action potentials is an important step toward understanding how the neurons communicate. The dominant point of view is that bursts are needed to increase the reliability of communication between neurons [Trends Neurosci. 20 (1997) 38]. In this paper we present an alternative but complementary hypothesis. We consider the effect of a short burst on a model postsynaptic cell having damped oscillation of its membrane potential. The oscillation frequency (eigenfrequency) plays a crucial role. Due to the subthreshold membrane resonance and frequency preference, the responses (i.e. voltage oscillations) of such a cell are amplified when the intra-burst frequency equals the cell's eigenfrequency. Responses are negligible, however, if the intra-burst frequency is twice the eigenfrequency. Thus, the same burst could be effective for one cell and ineffective for another depending on their eigenfrequencies. This theoretical observation suggests that, in addition to coping with unreliable synapses, bursts of action potentials may provide effective mechanisms for selective communication between neurons. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available