4.7 Article

MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 699, Issue 2, Pages L178-L182

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/699/2/L178

Keywords

galaxies: elliptical and lenticular, cd; galaxies: evolution; galaxies: interactions; galaxies: structure; methods: numerical

Funding

  1. DFG cluster of excellence

Ask authors/readers for more resources

Using a high-resolution hydrodynamical cosmological simulation of the formation of a massive spheroidal galaxy we show that elliptical galaxies can be very compact and massive at high redshift in agreement with recent observations. Accretion of stripped infalling stellar material increases the size of the system with time and the central concentration is reduced by dynamical friction of the surviving stellar cores. In a specific case of a spheroidal galaxy with a final stellar mass of 1.5 x 10(11) M(circle dot) we find that the effective radius r(e) increases from 0.7 +/- 0.2 kpc at z = 3 to r(e) = 2.4 +/- 0.4 kpc at z = 0 with a concomitant decrease in the effective density of an order of magnitude and a decrease of the central velocity dispersion by approximately 20% over this time interval. A simple argument based on the virial theorem shows that during the accretion of weakly bound material (minor mergers) the radius can increase as the square of the mass in contrast to the usual linear rate of increase for major mergers. By undergoing minor mergers compact high-redshift spheroids can evolve into present-day systems with sizes and concentrations similar to observed local ellipticals. This indicates that minor mergers may be the main driver for the late evolution of sizes and densities of early-type galaxies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available