4.7 Article

DIRECT CALCULATION OF THE RADIATIVE EFFICIENCY OF AN ACCRETION DISK AROUND A BLACK HOLE

Journal

ASTROPHYSICAL JOURNAL
Volume 692, Issue 1, Pages 411-421

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/692/1/411

Keywords

accretion, accretion disks; black hole physics; MHD; radiative transfer

Funding

  1. NSF [AST-0507455, PHY-0205155]

Ask authors/readers for more resources

Numerical simulation of magnetohydrodynamic (MHD) turbulence makes it possible to study accretion dynamics in detail. However, special effort is required to connect inflow dynamics (dependent largely on angular momentum transport) to radiation (dependent largely on thermodynamics and photon diffusion). To this end, we extend the flux-conservative, general relativistic MHD (GRMHD) code HARM from axisymmetry to full three dimensions. The use of an energy conserving algorithm allows the energy dissipated in the course of relativistic accretion to be captured as heat. The inclusion of a simple optically thin cooling function permits explicit control of the simulated disk's geometric thickness as well as a direct calculation of both the amplitude and location of the radiative cooling associated with the accretion stresses. Fully relativistic ray-tracing is used to compute the luminosity received by distant observers. For a disk with aspect ratio H/r similar or equal to 0.1 accreting onto a black hole with spin parameter a/M = 0.9, we find that there is significant dissipation beyond that predicted by the classical Novikov-Thorne model. However, much of it occurs deep in the potential, where photon capture and gravitational redshifting can strongly limit the net photon energy escaping to infinity. In addition, with these parameters and this radiation model, significant thermal and magnetic energy remains with the gas and is accreted by the black hole. In our model, the net luminosity reaching infinity is 6% greater than the Novikov-Thorne prediction. If the accreted thermal energy were wholly radiated, the total luminosity of the accretion flow would be similar or equal to 20% greater than the Novikov-Thorne value.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available