4.7 Article

PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS

Journal

ASTROPHYSICAL JOURNAL
Volume 692, Issue 2, Pages 973-997

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/692/2/973

Keywords

infrared: ISM; ISM: clouds; ISM: individual (Perseus, Serpens, Ophiuchus); stars: formation; submillimeter

Ask authors/readers for more resources

We present an unbiased census of deeply embedded protostars in Perseus, Serpens, and Ophiuchus, assembled by combining large-scale 1.1 mm Bolocam continuum and Spitzer Legacy surveys. We identify protostellar candidates based on their mid-infrared (mid-IR) properties, correlate their positions with 1.1 mm core positions from Enoch et al. in 2006 and 2007, and Young et al. in 2006, and construct well-sampled spectral energy distributions using our extensive wavelength coverage (lambda = 1.25-1100 mu m). Source classification based on the bolometric temperature yields a total of 39 Class 0 and 89 Class I sources in the three-cloud sample. We compare to protostellar evolutionary models using the bolometric temperature-luminosity diagram, finding a population of low-luminosity Class I sources that are inconsistent with constant or monotonically decreasing mass accretion rates. This result argues strongly for episodic accretion during the Class I phase, with more than 50% of sources in a sub-Shu (dM/dt < 10(-6)M(circle dot) yr(-1)) accretion state. Average spectra are compared to protostellar radiative transfer models, which match the observed spectra fairly well in Stage 0, but predict too much near-IR and too little mid-IR flux in Stage I. Finally, the relative number of Class 0 and Class I sources is used to estimate the lifetime of the Class 0 phase; the three-cloud average yields a Class 0 lifetime of 1.7 +/- 0.3 x 10(5) yr, ruling out an extremely rapid early accretion phase. Correcting photometry for extinction results in a somewhat shorter lifetime (1.1 x 10(5) yr). In Ophiuchus, however, we find very few Class 0 sources (N-Class0/N-Class I similar to 0.1-0.2), similar to previous studies of that cloud. The observations suggest a consistent picture of nearly constant average accretion rate through the entire embedded phase, with accretion becoming episodic by at least the Class I stage, and possibly earlier.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available