4.5 Article

Brain mechanics For neurosurgery: modeling issues

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 1, Issue 2, Pages 151-164

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-002-0013-0

Keywords

-

Funding

  1. Whitaker Foundation

Ask authors/readers for more resources

Brain biomechanics has been investigated for more than 30 years. In particular, finite element analyses and other powerful computational methods have long been used to provide quantitative results in the investigation of dynamic processes such as head trauma. Nevertheless, the potential of these methods to simulate and predict the outcome of quasi-static processes such as neurosurgical procedures and neuropathological processes has only recently been explored. Some inherent difficulties in modeling brain tissues, which have impeded progress, are discussed in this work. The behavior of viscoelastic and poroelastic constitutive models is compared in simple 1-D simulations using the ABAQUS finite element platform. In addition, the behaviors of quasi-static brain constitutive models that have recently been proposed are compared. We conclude that a compressible viscoelastic solid model may be the most appropriate for modeling neurosurgical procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available