4.8 Article

The docking protein FRS2α controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors

Journal

MOLECULAR CELL
Volume 10, Issue 4, Pages 709-719

Publisher

CELL PRESS
DOI: 10.1016/S1097-2765(02)00689-5

Keywords

-

Ask authors/readers for more resources

The docking protein FRS2alpha functions as a major mediator of signaling by FGF and NGF receptors. Here we demonstrate that, in addition to tyrosine phosphorylation, FRS2alpha is phosphorylated by MAP kinase on multiple threonine residues in response to FGF stimulation or by insulin, EGF, and PDGF, extracellular stimuli that do not induce tyrosine phosphorylation of FRS2alpha. Prevention of FRS2alpha threonine phosphorylation results in constitutive tyrosine phosphorylation of FRS2a in unstimulated cells and enhanced tyrosine phosphorylation of FRS2alpha, MAPK stimulation, cell migration, and proliferation in FGF-stimulated cells. Expression of an FRS2alpha mutant deficient in MAPK phosphorylation sites induces anchorage-independent cell growth and colony formation in soft agar. These experiments reveal a novel MAPK-mediated, negative feedback mechanism for control of signaling pathways that are dependent on FRS2 and a mechanism for heterologous control of signaling via FGF receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available