4.7 Article

ACCRETION SHOCKS IN CLUSTERS OF GALAXIES AND THEIR SZ SIGNATURE FROM COSMOLOGICAL SIMULATIONS

Journal

ASTROPHYSICAL JOURNAL
Volume 696, Issue 2, Pages 1640-1656

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0004-637X/696/2/1640

Keywords

cosmology: theory; galaxies: clusters: general

Funding

  1. NSF [AST-0708150, AST-05-07161, AST-05-47823]
  2. NASA [NAG5-13378]
  3. Hungarian National Office for Research and Technology

Ask authors/readers for more resources

Cold dark matter (CDM) hierarchical structure formation models predict the existence of large-scale accretion shocks between the virial and turnaround radii of clusters of galaxies. Kocsis et al. suggest that the Sunyaev-Zel'dovich signal associated with such shocks might be observable with the next generation radio interferometer, ALMA (Atacama Large Millimeter Array). We study the three-dimensional distribution of accretion shocks around individual clusters of galaxies drawn from adaptive mesh refinement (AMR) and smoothed particle hydrodynamics simulations of ACDM (dark energy dominated CDM) models. In relaxed clusters, we find two distinct sets of shocks. One set (virial shocks), with Mach numbers of 2.5-4, is located at radii 0.9-1.3 R-vir, where R-vir is the spherical infall estimate of the virial radius, covering about 40%-50% of the total surface area around clusters at these radii. Another set of stronger shocks (external shocks) is located farther out, at about 3 R-vir, with large Mach numbers (approximate to 100), covering about 40%-60% of the surface area. We simulate SZ surface brightness maps of relaxed massive galaxy clusters drawn from high-resolution AMR runs, and conclude that ALMA should be capable of detecting the virial shocks in massive clusters of galaxies. More simulations are needed to improve estimates of astrophysical noise and to determine optimal observational strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available